Bis[hydrazido(2-)] and related complexes of molybdenum(vi): towards alkene-metathesis catalysts based on hydrazido(2-) ligation

J onathan R . D ilworth, *,a Vernon C. G ibson, ${ }^{*, b}$ C anzhong L u, J ohn R . M iller, ${ }^{\text {a }} \mathbf{C}$ arl Redshaw ${ }^{\text {b }}$ and Y ifan Z heng ${ }^{\text {a }}$
${ }^{\text {a }}$ D epartment of Biological and Chemical Sciences, U niversity of Essex, W ivenhoe Park, C olchester CO4 3SQ, UK
${ }^{\text {b }}$ D epartment of Chemistry, Imperial College, L ondon SW 7 2AY, UK

Abstract

The complex $\left[\mathrm{Mo}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2} \mathrm{Cl}_{2}\right.$ (dme)] (dme = 1,2-dimethoxyethane) underwent an imideligand exchange reaction with an excess of 1,1 -diphenylhydrazine hydrochloride in refluxing dme to give the bis[hydrazido($2-$)] complex [$\left.\mathrm{M} \mathrm{oCl} l_{2}\left(\mathrm{~N} \mathrm{NPh}_{2}\right)_{2}(\mathrm{dme})\right]$ 1. Reaction of $\mathbf{1}$ with an excess of $\mathrm{PM} \mathrm{e}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $\left[\mathrm{M} \mathrm{oCl}_{2}\left(\mathrm{~N} \mathrm{~N} \mathrm{Ph}_{2}\right)_{2}\left(\mathrm{PM} \mathrm{e}_{3}\right)_{2}\right]$ 2. Treatment of $\mathrm{Na}_{2}\left[\mathrm{MoO}_{4}\right]$ with 2 molar equivalents of $\mathrm{Ph}_{2} \mathrm{NNH}_{2} \cdot \mathrm{HCl}$ in the presence of NEt_{3} and $\mathrm{SiM} \mathrm{e}_{3} \mathrm{Cl}$ in refluxing dme afforded the salt $\left[\mathrm{N} \mathrm{H} \mathrm{Et}_{3}\right]\left[\mathrm{M} \mathrm{oCl}_{4}\left(\mathrm{~N} \mathrm{~N} \mathrm{Ph}_{2}\right)\left(\mathrm{N} \mathrm{HN} \mathrm{Ph}_{2}\right)\right]$ 3. The crystal structures of $\mathbf{1 - 3}$ have been determined; all possess octahedral geometries with unidentate hydrazido groups. The hydrazido(2-) Mo-N bond distances vary from 1.749(2) and 1.771(2) \AA in 1, to 1.793(3) in $\mathbf{2}$ and 1.748(2) \AA in 3, with no simple correlation with the $\mathrm{Mo} 0-\mathrm{N}_{\alpha}-\mathrm{N}_{\beta}$ angle. The anionic component of $\mathbf{3}$ contains a bent hydrazide($1-$) ligand ($\mathrm{Mo} 0-\mathrm{N}-\mathrm{N} 136.0^{\circ}$) and a linear hydrazido($2-$) group ($\mathrm{M} \mathrm{o}-\mathrm{N}-\mathrm{N} 174.4^{\circ}$).

Imide ligands play a central role in the stabilization of welldefined metathesis catalysts of molybdenum, ${ }^{1}$ tungsten ${ }^{2}$ and rhenium. ${ }^{3}$ The four-co-ordinate molybdenum complexes $\left[\mathrm{Mo}\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pri}_{2}-2,6\right)\left(\mathrm{CHCM} \mathrm{e}_{2} \mathrm{Ph}\right)(\mathrm{OR})_{2}\right] \quad\left[\mathrm{R}=\mathrm{CM} \mathrm{e}_{3}, \quad \mathrm{CM} \mathrm{e}_{2}-\right.$ $\left(\mathrm{CF}_{3}\right)$ or $\left.\mathrm{CMe}^{2}\left(\mathrm{CF}_{3}\right)_{2}\right]$ in particular have found widespread application in the controlled synthesis of polymers via ringopening metathesis polymerization. ${ }^{4}$ In view of the close isoelectronic relationship between the hydrazide(2-) ligand and the imido (NR) group, we have embarked upon a programme of study aimed at exploring the potential of hydrazide ligands for stabilizing a new family of well defined metathesis catalysts. Here, we report the synthesis, characterization and crystal structures of several important precursors.

Results and D iscussion

We have recently shown that the complex $\left[\mathrm{MoCl}_{2}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2}(\mathrm{dme})\right]$ (dme = 1,2-dimethoxyethane) undergoes imide ligand exchange upon treatment with anilines in dme at $70^{\circ} \mathrm{C} .{ }^{5}$ This synthetic procedure is quite general and we show here that it can be extended to the synthesis of hydrazido(2-) complexes by treatment of bis(imido)molybdenum precursors with the hydrochloride salt of diphenylhydrazine.

The reaction of $\left[\mathrm{M} \mathrm{OCl}_{2}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2}(\mathrm{dme})\right]$ with $\mathrm{Ph}_{2} \mathrm{~N} \mathrm{NH}_{2} \cdot \mathrm{HCl}(2$ equivalents) in refluxing dme (ca. 2 h) readily gives multigram quantities of $\left[\mathrm{M} \mathrm{OCl}_{2}\left(\mathrm{NNPh}_{2}\right)_{2}(\mathrm{dme})\right] 1$ as an orange solid. Complex 1 shows a single v_{NN} stretch at $1586 \mathrm{~cm}^{-1}$. Crystals suitable for an X -ray analysis were grown from dme at $-20^{\circ} \mathrm{C}$; the molecular structure is shown in Fig. 1. Bond lengths and angles are collected in Table 1 and crystal data are given in Table 4. The molecular geometry is distorted octahedral with trans chloride and cis hydrazido(2-) groups. The $\mathrm{N}(1)-\mathrm{M} \mathrm{o}-\mathrm{N}(3)$ angle is $105.56(10)^{\circ}$, the cis $\mathrm{O}(1)-\mathrm{Mo}-\mathrm{Cl}(2)$ and trans $\mathrm{Cl}(2)-\mathrm{Mo-Cl}(1)$ angles are $85.99(5)^{\circ}$ and $162.14(3)^{\circ}$ respectively. The two hydrazide(2-) ligands are somewhat different: the Mo-N distances are short [M 0-N (1) 1.749(2), Mo o-N (3) $1.771(2) \AA$], the former is the shortest reported to date for the cis- $\left\{\mathrm{M}(\mathrm{NNR})_{2}\right\}$ core ${ }^{6}$ The corresponding $\mathrm{Mo}-\mathrm{N}-\mathrm{N}$ angles are 173.4(2) and 154.6(2) ${ }^{\circ}$. By comparison with analogous bis(imido)molybdenum complexes, the latter is likely to be at the lower limit for a linear hydrazido(2-) group.
Treatment of complex 1 with 1 equivalent of magnesium in

Fig. 1 M olecular structure of complex 1, without H atoms and with key atoms labelled
thf in the presence of an excess of trimethylphosphine afforded orange crystalline $\left[\mathrm{MoCl}_{2}\left(\mathrm{NNPh}_{2}\right)_{2}\left(\mathrm{PM} \mathrm{e}_{3}\right)_{2}\right]$ 2. Roomtemperature NMR data reveal a virtually coupled triplet centred at $\delta 1.55$ in the ${ }^{1} \mathrm{H}$ N M R spectrum and a singlet in the ${ }^{31} \mathrm{P}$ N M R spectrum ($\delta 5.92$) consistent with a structure in which the two phosphines are equivalent. Crystals of 2 suitable for a structure determination were grown by diffusion of heptane into a saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Fig. 2 shows the cis chloride, trans phosphine pseudo-octahedral geometry of 2. The crystal data are given in Table 4 and selected bond lengths and angles are in Table 2. The molecules lie on crystallographic two-fold axes. The Mo-N separation of 1.793 (3) \AA and the associated $\mathrm{Mo}-\mathrm{N}(1)-\mathrm{N}(2)$ angle of $175.2(2)^{\circ}$ are consistent with linear hydrazido(2-) units.
A ttempts to isolate complex 1 by interaction of $\mathrm{Na}_{2}\left[\mathrm{MoO}_{4}\right]$ with $\mathrm{Ph}_{2} \mathrm{NNH}_{2} \cdot \mathrm{HCl}$ in the presence of NEt_{3} and $\mathrm{SiMe}_{3} \mathrm{Cl}$ in refluxing dme led, after work-up, to a diamagnetic purple crystalline solid. Infrared data showed a N -H stretch at $3208 \mathrm{~cm}^{-1}$ and a strong $v_{N N}$ stretch at $1585 \mathrm{~cm}^{-1}$, while the ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectrum contained resonances at $\delta \mathrm{ca} .8 .2$ (br) and ca. 12.9 (sharp) due to two different nitrogen-bound hydrogens. A nalytical data

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1

M o-N (1)	1.749(2)	M o-N (3)	1.771(2)
$\mathrm{M} \mathrm{O-O}(1)$	2.322(2)	M o-0 (2)	2.331(2)
$\mathrm{Mo}-\mathrm{Cl}(2)$	2.4380 (9)	$\mathrm{Mo}-\mathrm{Cl}(1)$	2.4451(9)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.324(3)	$\mathrm{N}(2)-\mathrm{C}(11)$	1.430(3)
$\mathrm{N}(2)-\mathrm{C}(21)$	1.435(3)	$N(3)-N(4)$	1.326(3)
N (4)-C(31)	1.421(3)	N (4)-C(41)	1.440 (3)
$\mathrm{N}(1)-\mathrm{Mo} 0-\mathrm{N}(3)$	105.56(10)	$\mathrm{N}(1)-\mathrm{Mo} 0$ O(1)	164.13(8)
$\mathrm{N}(3)-\mathrm{M} \mathrm{O}-\mathrm{O}(1)$	89.75(9)	$\mathrm{N}(1)-\mathrm{Mo} 0$ O(2)	94.46(9)
$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{O}(2)$	159.68(9)	$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(2)$	70.60(7)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{Cl}(2)$	97.19(7)	$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{Cl}(2)$	92.88(8)
$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{Cl}(2)$	85.99(5)	$\mathrm{O}(2)-\mathrm{Mo}-\mathrm{Cl}(2)$	80.98(6)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{Cl}(1)$	94.23(7)	$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{Cl}(1)$	97.23(8)
$\mathrm{O}(1)-\mathrm{M} \mathrm{o}-\mathrm{Cl}(1)$	79.40(5)	$\mathrm{O}(2)-\mathrm{Mo}-\mathrm{Cl}(1)$	84.49(5)
$\mathrm{Cl}(2)-\mathrm{Mo} 0-\mathrm{Cl}(1)$	162.14(3)	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{M} \mathrm{o}$	173.4(2)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	120.0(2)	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(21)$	116.3(2)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(21)$	122.2(2)	$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{M} \mathrm{o}$	154.6(2)
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(31)$	118.3(2)	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(41)$	118.6(2)
$\mathrm{C}(31)-\mathrm{N}$ (4)-C(41)	122.6(2)		

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex 2

M o-N (1)	$1.793(3)$	$\mathrm{P}-\mathrm{C}(3)$	$1.811(4)$
$\mathrm{M} \mathrm{o-P}$	$2.5141(12)$	$\mathrm{N}(1)-\mathrm{N}(2)$	$1.306(4)$
$\mathrm{M} \mathrm{o-Cl}$	$2.5625(11)$	$\mathrm{N}(2)-\mathrm{C}(11)$	$1.432(4)$
$\mathrm{P}-\mathrm{C}(2)$	$1.805(5)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.450(4)$
$\mathrm{P}-\mathrm{C}(1)$	$1.810(4)$		
$\mathrm{N}(1)-\mathrm{M} \mathrm{o-N}\left(1^{\prime}\right)$	$103.6(2)$	$\mathrm{P}-\mathrm{M} \mathrm{o-Cl}$	$90.42(4)$
$\mathrm{N}(1)-\mathrm{M} \mathrm{o-P}$	$92.59(9)$	$\mathrm{Cl}-\mathrm{M} \mathrm{o-Cl}$	$76.76(5)$
$\mathrm{N}(1)-\mathrm{M} \mathrm{o-Pl}$	$93.02(9)$	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{M} \mathrm{o}$	$175.2(2)$
$\mathrm{P}-\mathrm{M} \mathrm{o-PI}$	$170.92(5)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	$121.4(3)$
$\mathrm{N}(1)-\mathrm{M} \mathrm{o-Cl}$	$165.80(9)$	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(21)$	$119.7(3)$
$\mathrm{P}-\mathrm{M} \mathrm{o-Cl}$			
$\mathrm{~N}(1)-\mathrm{M}$ o-Cl	$82.45(4)$	$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(21)$	$118.8(3)$
Symmetry relation: $\mathrm{I}-\mathrm{x}, \mathrm{y},-\mathrm{z}+\frac{1}{2}$.			

Fig. 2 M olecular structure of complex 2, without H atoms and with key atoms labelled
were consistent with the stoichiometry $\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{M} \mathrm{OCl}_{4}{ }^{-}\right.$ $\left.\left(\mathrm{N} \mathrm{N} \mathrm{Ph}_{2}\right)\left(\mathrm{NHNPh}_{2}\right)\right]$ 3. The structure was determined by X -ray diffraction and a view of the ion pair is shown in Fig. 3. Selected bond lengths and angles and crystal data are given in Tables 3 and 4 respectively. The structure contains a pseudooctahedral anionic molybdenum fragment with cis NNPh_{2} units bound in two different ways. One has the linear $\mathrm{Mo} \mathrm{o}-\mathrm{N}-\mathrm{N}$ arrangement, with short $\mathrm{M}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bonds and a trigonalplanar arrangement of the $N(2)$ atom, and may be described as a 'hydrazide(2-)' ligand, or better related to its geometry, as an 'isodiazene'.' The other ligand is notably different, with a $\mathrm{Mo}-\mathrm{N}-\mathrm{N}$ angle of $136.0(2)^{\circ}$, a M o-N distance of 1.958(2) \AA and a $\mathrm{N}-\mathrm{N}$ distance of $1.358(3) \AA$. A tom $\mathrm{N}(4)$ has a trigonal-

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 3

$\mathrm{Mo} 0-\mathrm{Cl}(1)$	2.4448(7)	$\mathrm{Mo}-\mathrm{Cl}(2)$	$2.4788(7)$
$\mathrm{Mo}-\mathrm{Cl}(3)$	2.4213(7)	$\mathrm{Mo}-\mathrm{Cl}(4)$	2.4641(7)
Mo - N (1)	1.748 (2)	M o-N (3)	1.958(2)
$\mathrm{N}(1)-\mathrm{N}(2)$	1.304(3)	$\mathrm{N}(3)-\mathrm{N}(4)$	1.358(3)
$\mathrm{H}-\mathrm{Cl}(3)$	2.579(1)	$\mathrm{H}(1)-\mathrm{Cl}(2)$	2.573(1)
$\mathrm{Cl}(1)-\mathrm{Mo}-\mathrm{Cl}(2)$	84.51(3)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{Cl}(3)$	169.31(3)
$\mathrm{Cl}(1)-\mathrm{Mo} 0-\mathrm{Cl}(4)$	85.73(3)	$\mathrm{Cl}(1)-\mathrm{M} \mathrm{o-N} \mathrm{(1)}$	94.82(7)
$\mathrm{Cl}(1)-\mathrm{Mo}-\mathrm{N}(3)$	86.43(7)	$\mathrm{Cl}(2)-\mathrm{Mo}-\mathrm{Cl}(3)$	86.07(3)
$\mathrm{Cl}(2)-\mathrm{Mo}-\mathrm{Cl}(4)$	87.70(3)	$\mathrm{Cl}(2)-\mathrm{M} \mathrm{o-N} \mathrm{(1)}$	179.32(7)
$\mathrm{Cl}(2)-\mathrm{Mo}-\mathrm{N}(3)$	82.97(6)	$\mathrm{Cl}(3)-\mathrm{Mo}-\mathrm{Cl}(4)$	88.85(3)
$\mathrm{Cl}(3)-\mathrm{Mo}-\mathrm{N}(1)$	94.58(7)	$\mathrm{Cl}(3)-\mathrm{M} \mathrm{o-N} \mathrm{(3)}$	97.43(7)
$\mathrm{Cl}(4)-\mathrm{Mo}-\mathrm{N}(1)$	92.10(7)	$\mathrm{Cl}(4)-\mathrm{M} \mathrm{O-N}$ (3)	168.34(7)
$\mathrm{N}(1)-\mathrm{M} 0-\mathrm{N}$ (3)	97.15(9)	$\mathrm{Mo}-\mathrm{N}(1)-\mathrm{N}$ (2)	174.4(2)
$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(11)$	119.8(2)	$\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(21)$	118.8(2)
$\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(21)$	121.3(2)	$\mathrm{M} \mathrm{O-N}$ (3)-N (4)	136.0(2)
$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(31)$	118.5(2)	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(41)$	119.0(2)
$\mathrm{C}(31)-\mathrm{N}(4)-\mathrm{C}(41)$	120.7(2)		

Fig. 3 M olecular structure of complex 3, without H atoms and with key atoms labelled
planar environment. The atoms $\mathrm{Mo}, \mathrm{Cl}(2), \mathrm{N}(1), \mathrm{N}(2), \mathrm{N}(3)$ and $N(4)$ are virtually coplanar [maximum deviation through the best plane $0.026 \AA$ for $N(3)]$, and the $\mathrm{Mo}-\mathrm{N}(3)-\mathrm{N}$ (4) unit bends towards the M o-N (1)-N (2) fragment most likely in order to accommodate a bond to a hydrogen atom (see below).

In order to account for the diamagnetism of the compound and the presence of $\mathrm{N}-\mathrm{H}$ stretching frequencies in the infrared spectrum, the anion has to contain a hydrogen atom not detected by the X-rays but attached to a nitrogen atom; wehave placed this hydrogen atom on the first N atom, $\mathrm{N}(3)$, of the bent $\mathrm{NNPh} h_{2}$ ligand, which would normally imply its description as a ' N, N-diphenylhydrazido(1-)' group; the internal geometry, particularly the coplanarity of $N(4)$ with $N(3), C(31)$ and $\mathrm{C}(41)$, suggests however that it could also be described as a protonated diphenylisodiazene. The calculated position of $\mathrm{H}(1)$ places it $2.57 \AA$ from $\mathrm{Cl}(2)$, consistent with an internal hydrogen bond. The C and N atoms of the triethylammonium cation are very well defined in the structure determination and the N bound hydrogen atom was placed in a calculated position $0.9 \AA$ from the N atom. This position indicates that it is hydrogen bonded to $\mathrm{Cl}(3)$ and $\mathrm{Cl}(4)$, with $\mathrm{H} \cdots \mathrm{Cl}$ distances of 2.58 and $2.72 \AA$ respectively; thus in the solid state $\mathbf{3}$ is an ion pair.

The internal geometry of the $\mathrm{N}_{\mathrm{a}} \mathrm{N}_{\beta} \mathrm{Ph}_{2}$ units in complexes $\mathbf{1}$ 3 and in many other complexes of this type, supports the suggestion ${ }^{7}$ that these ligands are described more accurately as 'isodiazene' than as 'hydrazido(2-)'. The coplanarity of the three bonds to N_{β} is a constant theme, pointing to N_{β} being conjugated. The $\mathrm{N}_{\alpha}-\mathrm{N}_{\beta}$ bond distances are intermediate between those for single and double bonds ${ }^{8}$ (single bond, 1.40 1.46; double bond, 1.22-1.26 \AA). Even in the protonated ligand of $3, N_{B}$ is trigonal planar and the $\mathrm{N}-\mathrm{N}$ distance is only $1.358(3) \AA$. I soelectronic with ketones, isodiazenes would be

Table 4 Crystal structure determinations for complexes 1-3

1
$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{M}$ oN $\mathrm{N}_{4} \mathrm{O}_{2}$
621.40
$0.25 \times 0.5 \times 0.56$
M onoclinic
P2/n
15.981(5)
9.984(2)
17.688(5)
97.78(2)
2796.1(13)

4
1.476
0.692

1272
291
1.61-25.02
$0-18,0-11,-21$ to 20
5096
4910 (0.0121)
$4004[1>2 \sigma(1)]$
1.00, 0.92
$1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0299 P)^{2}+\right.$
$1.4945 \mathrm{P}], \mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
4910, 0, 454
0.0267, 0.0678
1.193

2
$\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClM} \mathrm{O}_{0.5} \mathrm{~N}_{2} \mathrm{P}$
341.71
$0.39 \times 0.72 \times 0.83$
Orthorhombic
Pbcn
9.278(3)
21.692(7)
16.097(9)

3240(2)
8
1.401
0.694

1408
291
1.88-24.98
$0-11,-25$ to $19,0-19$
5419
2827 (0.0414)
$2240[1>2 \sigma(1)]$
1.00, 0.857
$1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0475 P)^{2}+\right.$
$0.9756 \mathrm{P}], \mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
2827, 0, 177
$0.0475,0.1033$
1.251

3
$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{Cl}_{4} \mathrm{M}$ oN ${ }_{5}$
705.4
$0.2 \times 0.3 \times 0.7$
M onoclinic
P2 2 /n
12.1775(36)
10.6011(9)
26.4756(97)
99.44(2)
3371.5(1.6)

4
1.390
0.725

1448
291
1.5-25.0
$0-14,-12-0,-31$ to 31
6620
6305 (0.013)
5016 [l>1.5 \quad (1)]
1.00, 0.93
$1 /\left[\sigma^{2}\left(F_{0}\right)+\left(0.02 F_{0}\right)^{2}\right]$
5016, 0,361
$0.034,0.046^{\text {b }}$
$1.80^{\text {d }}$
 and $p=$ total number of parameters. ${ }^{d}\left[\Sigma w\left(F_{0}-F_{c}\right)^{2} /(n-p)\right]^{\frac{1}{2}}$.
expected to have two N_{a} lone pairs in the $\mathrm{N}_{\alpha} \mathrm{N}_{\beta} \mathrm{C}_{2}$ plane (alternatively regarded as a combination of a σ lone pair on the NN vector and a π pair in the $N \mathrm{NC}_{2}$ plane); N_{d} would be expected to be more basic, and therefore a better donor, than the O atom of a ketone as it carries an effective negative charge. We suggest that the difference between the isodiazene and hydrazido(2-) descriptions is real because hydrazido(2-) complexes should have pyramidally bound $\mathrm{N}_{\mathrm{\beta}}$ atoms and distinctly longer $\mathrm{N}-\mathrm{N}$ distances. A ssignment of the ligands as electronically neutral isodiazenes implies that they are derived from hydrazines by oxidation rather than via reductive deprotonation.

The Mo-N distances in all the complexes suggest multiplebond character except for the protonated ligand of $\mathbf{3}$, where the distance of $1.958(2) \AA$ is readily assigned to a single bond; this is also consistent with the $\mathrm{Mo}-\mathrm{N}_{a}-\mathrm{N}_{\beta}$ angle of $136.0(2)^{\circ}$, i.e. one of the N_{α} Ione pairs co-ordinates to Mo , the other to H^{+}. A mong the unprotonated ligands there is no correlation between bond distances and the $\mathrm{M} 0-\mathrm{N}_{\mathrm{a}}{ }^{-} \mathrm{N}_{\beta}$ angle.

The derivative chemistry of these hydrazido(2-) complexes is under development and will be reported at a future date.

Experimental

General

All manipulations were carried out under an atmosphere of nitrogen using standard Schlenk and cannula techniques or in a conventional nitrogen-filled glove-box. Solvents were refluxed over an appropriate drying agent, and distilled and degassed prior to use. Elemental analyses were performed by the microanalytical services of the D epartment of Chemistry at D urham and M edac Ltd. The NMR spectra were recorded on a Varian VXR 400 S spectrometer at $400.0\left({ }^{1} \mathrm{H}\right)$ and $162.0 \mathrm{M} \mathrm{Hz}\left({ }^{31} \mathrm{P}\right.$, referenced to dilute aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}, \delta 0$) and a Bruker DRX 300 machine at $75.0 \mathrm{M} \mathrm{Hz}\left({ }^{13} \mathrm{C}\right)$; chemical shifts are referenced to the residual protio impurity of the deuteriated solvent. The IR spectra (N ujol mulls, Csl or K Br windows) were recorded on Perkin-Elmer 577 and 457 grating spectrophotometers. The complex $\left[\mathrm{Mo}\left(\mathrm{N} \mathrm{Bu}^{t}\right)_{2} \mathrm{Cl}_{2}\right] \cdot d m e^{9}$ was prepared by the literature method. All other chemicals were obtained commercially and used as received unless stated otherwise.

Syntheses

$\left[\mathrm{M} \mathrm{OCl}_{2}\left(\mathrm{NNPh}_{2}\right)_{2}(\mathrm{dme})\right]$ 1. The complex $\left[\mathrm{M} \mathrm{oCl}_{2}\left(\mathrm{~N} \mathrm{Bu}^{\mathrm{t}}\right)_{2}(\mathrm{dme})\right]$ $(1.0 \mathrm{~g}, 2.5 \mathrm{mmol})$ and $\mathrm{Ph}_{2} \mathrm{~N} \mathrm{NH}_{2} \cdot \mathrm{HCl}(1.1 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dme $\left(30 \mathrm{~cm}^{3}\right)$ were refluxed for 12 h . A fter filtration and concentration (to ca. $20 \mathrm{~cm}^{3}$) deep orange prisms of the product were deposited on standing at room temperature. Y ield $0.48 \mathrm{~g}, 31 \%$. Further crops can be obtained from the mother-liquor; overall yield 70\% (Found: C, 54.1; $\mathrm{H}, 4.9 ; \mathrm{N}, 9.1 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{M}$ oN $\mathrm{N}_{4} \mathrm{O}_{2}$ requires C, $54.1 ; \mathrm{H}, 4.9$; N, 9.0\%). IR: $2711 \mathrm{w}, 2600 \mathrm{w}, 2500 \mathrm{w}$, 2078w, 1586s, 1511w, 1328w, 1298m, 1262s, 1158s, 1087 (br) bs, 1043s, $922 w$, $862 \mathrm{~s}, 848 \mathrm{~m}, 801 \mathrm{~s}, 760 \mathrm{~s}$, 692s, 654w, 634m, 530w and $494 \mathrm{~m} \mathrm{~cm}{ }^{-1} . \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}), \delta 7.31(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{o}-\mathrm{H}), 7.13(\mathrm{~m}, 8 \mathrm{H}, \mathrm{m}-\mathrm{H}), 6.94(\mathrm{~m}, 4 \mathrm{H}, \mathrm{p}-\mathrm{H}), 3.96(\mathrm{~s}, 4 \mathrm{H}$, CH_{2}) and $3.52\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75 \mathrm{M} \mathrm{Hz}), \delta 142.77$, $128.39,125.58,120.87,71.01\left(\mathrm{~s}, \mathrm{CH}_{2}\right.$ of dme) and $63.86\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ of dme).
$\left[\mathrm{M} \mathrm{OCl}_{2}\left(\mathrm{NNPh}_{2}\right)_{2}\left(\mathrm{PM} \mathrm{e}_{3}\right)_{2}\right]$ 2. Trimethylphosphine ($0.21 \mathrm{~cm}^{3}$, $2.0 \mathrm{mmol})$ was added to $\left[\mathrm{MoCl} \mathrm{I}_{2}\left(\mathrm{~N} \mathrm{NPh}_{2}\right)_{2}(\mathrm{dme})\right](0.5 \mathrm{~g}, 0.8$ $\mathrm{mmol})$ and $\mathrm{Mg}(0.02 \mathrm{~g}, 0.83 \mathrm{mmol})$ in thf $\left(30 \mathrm{~cm}^{3}\right)$. A fter stirring for 12 h , the volatiles were removed under reduced pressure and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. Diffusion of heptane into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave orange prisms. Y ield $0.4 \mathrm{~g}, 82 \%$ (Found: C, 52.5; H, 5.7; N, 8.0. $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{M} \mathrm{ON}_{4} \mathrm{P}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires $C, 53.3 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.0 \%)$. IR: $1587 \mathrm{w}, 1338 \mathrm{w}, 1294 \mathrm{~m}$, 1250w, 1163w, 948m, 755w, 692w, 497w, 476w, 358w 330w, 314w, 294m and 251vs cm ${ }^{-1}$. NMR (CDCl $)_{3}$: ${ }^{1} \mathrm{H}(400 \mathrm{M} \mathrm{Hz}), \delta$ $7.19(\mathrm{~m}, 16 \mathrm{H}, 0, \mathrm{~m}-\mathrm{H}), 7.06\left(\mathrm{tt}, 4 \mathrm{H}, \mathrm{J}=6.8, \mathrm{~J}^{\prime}=1.6, \mathrm{p}-\mathrm{H}\right)$ and $1.55\left(\mathrm{t}, 18 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{PM} \mathrm{e}_{3}\right.$) ; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75 \mathrm{M} \mathrm{Hz}), \delta 146.39$, 131.64, 128.66, 124.29, 17.72 ($\mathrm{t}, \mathrm{J}=13.0 \mathrm{~Hz}, \mathrm{PM} \mathrm{e}_{3}$); ${ }^{31} \mathrm{P}(162$ M Hz), $\delta 5.92$ (s).
$\left[\mathrm{NHEt}_{3}\right]\left[\mathrm{M} \mathrm{OCl}_{4}\left(\mathrm{NNPh}_{2}\right)\left(\mathrm{NHNPh}_{2}\right)\right]$ 3. Triethylamine (13.6 $\left.\mathrm{cm}^{3}, 97.6 \mathrm{mmol}\right)$ and $\mathrm{SiM}_{3} \mathrm{Cl}\left(24.5 \mathrm{~cm}^{3}, 193.0 \mathrm{mmol}\right)$ were added to $\mathrm{Na}_{2}\left[\mathrm{MoO}_{4}\right](5.0 \mathrm{~g}, 24.3 \mathrm{mmol})$ and $\mathrm{Ph}_{2} \mathrm{NNH}_{2} \cdot \mathrm{HCl}$ ($10.72 \mathrm{~g}, 48.5 \mathrm{mmol}$) in dme (ca. $20 \mathrm{~cm}^{3}$). A fter refluxing for 12 h the suspension was filtered whilst hot. Purple lustrous crystals of complex 3 were deposited on standing at room temperature ($2.81 \mathrm{~g}, 16.4 \%$ isolated yield) (Found: C, 51.2; H, 5.3; N, 9.8.
$\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{Cl}_{4} \mathrm{M}$ oN ${ }_{5}$ requires $\mathrm{C}, 51.0 ; \mathrm{H}, 5.3 ; \mathrm{N}, 9.9 \%$). IR : 3208 w , $1585 \mathrm{~m}, 1460 \mathrm{~s}, 1377 \mathrm{~s}, 1261 \mathrm{~s}, 1154 \mathrm{~m}, 806 \mathrm{~m}, 758 \mathrm{~s}, 734 \mathrm{~m}, 693 \mathrm{~s}$, $654 \mathrm{~s}, 610 \mathrm{~m}, 522 \mathrm{w}$ and $496 \mathrm{~m} \mathrm{~cm}{ }^{-1}$. NMR (CDCl_{3}): ${ }^{1} \mathrm{H}(400$ MHz), $\delta 12.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHNPh}\right.$), 8.29 (brs, $1 \mathrm{H}, \mathrm{Et}_{3} \mathrm{NH}$), $7.17-$ 7.05 (m, $18 \mathrm{H}, 0, \mathrm{~m}-\mathrm{H}), 6.89(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.4, \mathrm{p}-\mathrm{H}), 3.21(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$) and $1.31\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(75$ $\mathrm{M} \mathrm{Hz}), \delta 144.48,137.98,129.49,128.96,127.89,127.36,124.02$, 122.57, 47.12 and 9.13.

X-R ay crystallography

N umerical data are summarised in Table 4.
Data collection. Intensity data were collected on an EnrafNonius diffractometer with monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). Cell constants were obtained from least-squares refinement of the setting angles of 25 centred reflections in the range $20<\theta<25^{\circ}$ for complex $1,20<\theta<22^{\circ}$ for $\mathbf{2}$ and $22<\theta<25^{\circ}$ for $\mathbf{3}$. The data were collected in the $\omega-2 \theta$ scan mode and three standard reflections were measured every 3 h of exposure; 4.5 (for $\mathbf{1}$), 0 (2) and 6.0% (3) loss of intensity was observed which was linearly corrected during processing. Three standard reflections were measured every 200 to check the crystal orientation. The data were corrected for Lorentzpolarization factors and an absorption correction was applied using ψ scans of nine reflections.

Structure analysis and refinement. Structures 1 and 2 were solved via direct methods (core atoms) ${ }^{10}$ and refined on $F_{0}{ }^{2}$ by full-matrix least squares. ${ }^{11} \mathrm{~A}$ II non-hydrogen atoms were anisotropic. The hydrogen atoms were revealed by Fourier-difference synthesis and isotropically refined. The weighting scheme gave satisfactory agreement. F inal R indices [l>2 (I)]: for $1, R 1$ (on F) 0.0267 , wR 2 (on F^{2}) 0.0678; for 2, 0.0475, 0.1033. Largest difference peak and hole: for 1, 0.0245 and -0.447 ; for 2, 0.679 and -0.429 e \AA^{-3}. M aximum shift/es.d. was -0.212 (for 1) and -0.001 (for 2). Sources of scattering factors were as in ref. 11.

Structure $\mathbf{3}$ was solved by the Patterson heavy-atom method and refined on F_{0} by full-matrix least squares. ${ }^{12}$ All nonhydrogen atoms were anisotropic. The hydrogen atoms were included in calculated positions. Final R indices $\left[\mathrm{F}_{\mathrm{o}}>3 \sigma\left(\mathrm{~F}_{\mathrm{o}}\right)\right]$: R1 (on F) 0.034, R' (on F) 0.046. Largest difference peak and
hole: 0.710 and $-0.229 \mathrm{e}^{-3}{ }^{-3}$. The maximum shift/es.d. was <0.01.
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., D alton Trans., 1977, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/293.

Acknowledgements

The EPSRC is gratefully acknowledged for a grant to J. R. D. and V. C. G.

References

1 R. R. Schrock, J. S. M urdzek, C. G. Bazan, J. Robbins, M. DiM are and M. O'R egan, J. Am. Chem. Soc., 1990, 112, 3875; H. H. Fox, K. B. Yap, J. Robbins, S. Cai and R. R. Schrock, Inorg Chem., 1992, 31, 2287; H. H. Fox, J.-K. Lee, L. Y. Park and R. R. Schrock, O rganometallics, 1993, 12, 759.
2 R. R. Schrock, R. T. Depue, J. Feldman, K. B. Yap, D. C. Yang, W. M. Davies, L. Y. Park, M. DiM are, M. Schofield, J. Anhaus, E. Walborsky, E. Evitt, C. K ruger and P. Betz, Organometallics, 1990, 9, 2262; R. R. Schrock, R. T. D epue, J. Feldman, C. J. Schaverian, J. C. D ewan and A. H. Liu, J. A m. C hem. Soc., 1988, 110, 1423.
3 R. Toreki and R. R. Schrock, J. Am. Chem. Soc., 1990, 112, 2448; R. Toreki, R. R. Schrock and W. M. Davies, J. Am. Chem. Soc., 1992, 114, 3367.
4 See V. C. Gibson, A dv. M ater., 1994, 6, 37 and refs. therein.
5 A. Bell, W. Clegg, P. W. D yer, M. R.J. Elsegood, V. C. Gibson and E. L. M arshall, J. Chem. Soc., C hem. Commun., 1994, 2547.

6 P. B. K ettler, Y. D. Chang and J. Zubieta, Inorg Chem., 1994, 33, 5870.

7 A A A. Danopoulos, G. Wilkinson and D. J. Williams, J. Chem. Soc., D alton Trans., 1994, 907.
8 F. H. Allen, O. K ennard, D. G. Watson, L. Brammer and A. G. Orpen, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
9 P. W. Dyer, V. C. Gibson, J. A. K. Howard, B. Whittle and C. Wilson, Polyhedron, 1995, 14, 103.

10 G. M . Sheldrick, SH ELXS 86, U niversity of G öttingen, 1986
11 G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, U niversity of G öttingen, 1993.
12 MOLEN, An Interactive Structure Solution Procedure, EnrafN onius, Delft, 1990.

